PowerStation: Automatically detecting and fixing inefficiencies
of database-backed web applications in IDE’

Junwen Yang

Pranav Subramaniam, Shan Lu
University of Chicago
{junwen, psubramaniam, shanlu}@uchicago.edu

ABSTRACT

Modern web applications have stringent latency requirements while
processing an ever-increasing amount of user data. To address these
challenges and improve programmer productivity, Object Relational
Mapping (ORM) frameworks have been developed to allow devel-
opers writing database processing code in an object-oriented man-
ner. Despite such frameworks, prior work found that developers
still struggle in developing performant ORM-based web applica-
tions. This paper presents PowerStation, a RubyMine IDE plugin
for optimizing web applications developed using the Ruby on Rails
ORM. Using automated static analysis, PowerStation detects ORM-
related inefficiency problems and suggests fixes to developers. Our
evaluation on 12 real-world applications shows that PowerStation
can automatically detects 1221 performance issues across all of
them. We have uploaded a tutorial on using PowerStation plugin to
https://youtu.be/v_uY5bjGuKe.

1 INTRODUCTION

Modern web applications face stringent latency requirements and
increasingly large amounts of user data to process. Recent studies
have found that users expect every web page to load within two
seconds [18], with one second’s delay causing 11% fewer page
views, a 16% decrease in customer satisfaction, and 7% loss in
conversions [16]. At the same time, popular web applications often
encounter user accounts increasing from a few thousands to tens of
millions in few years [1, 6]. Such latency and data-scaling pressures
are particularly aggravated [19, 20, 29, 30] by the pervasive use
of Object-Relational Mapping (ORM) frameworks, which allow
database persistent data to be manipulated through object-oriented
code (e.g., Ruby on Rails [14], Django [4], and Hibernate [7]).

Previous studies have shown that developers often struggle at
writing efficient web applications using ORM frameworks [19, 20,
29, 30]. Several ORM-related performance anti-patterns have been
found to widely exist in real world database-backed web applications
and lead to application inefficiencies. Unfortunately, many of these
inefficiencies go undetected by compilers and database management
systems as they focus solely on either the application code or the
embedded queries, while recognizing such inefficiencies require
both systems to work in tandem.

This paper presents PowerStation, an IDE plugin for Ruby on
Rails (Rails) applications that automatically detects ORM-related
performance problems and suggests fixes for them. It makes two con-
tributions. First, we build a database-aware static analysis framework
for Rails applications. The current framework prototype enables
PowerStation to automatically detect 6 common ORM performance

*http://hyperloop.cs.uchicago.edu/powerstation

Cong Yan

Alvin Cheung
University of Washington

{congy, akcheung}@cs.washington.edu
+ rans = read_only(u) Copy: u =vl

values. rejeCt do | val | Call: v2 = values.reject

+ ran.include?val |

Branch
- | read_only(u)|.include?val T~
end [py; val Call: v3 = read_only(u)

Sql: SELECT * from custom_fields query node
JOIN ... JOIN ... WHERE user_id = ? Call:v3.include?val data edge

control edge
(a) Ruby code (b) ADG

Figure 1: Loop invariant query from Redmine (the code checks
which val in values list belongs to user u’s read-only fields)

anti-patterns and generate patches for 5 of them. These 6 patterns
have been summarized in previous work [19, 29, 30]; only 3 patterns
have been automatically detected previously, and we are unaware of
any tools that can automatically fix such anti-patterns.

Second, we have integrated PowerStation into a popular Rails
IDE, RubyMine [15], so that Rails developers can easily benefit
from PowerStation to improve the efficiency of their applications.
The source code of PowerStation is available on GitHub [10].

2 PERFORMANCE ANTI-PATTERNS

PowerStation currently tackles six performance anti-patterns. While
these patterns have been extracted by previous work [19, 29, 30]
from real-world Rails applications, they have not been systematically
detected and fixed before—three anti-patterns (RD, CS, and IA
below) were automatically detected in three different frameworks;
and we are unaware of prior work that performs automatic patching.

Loop invariant queries (LI) [30]. A query is repeatedly issued
in every iteration of a loop to load the same database content. In the
real-world example shown in Figure 1a, hoisting the query out of
the loop can speed up the application by more than 10x [13].

Dead store queries (DS) [30]. SQL queries are repeatedly issued
to assign the same memory object with different database content,
without any use of the memory object in between, making all but the
last query unnecessary.

Unused data-retrieval queries (RD) [19, 30]. Data is retrieved
from the database but never used in the program, making the corre-
sponding data transfer and query execution unnecessary.

Common sub-expression queries (CS) [29]. Queries with com-
mon sub-expressions are issued, causing unnecessary re-computation.

API misuses (IA) [30]. Different ORM APIs can be used to
retrieve the same results from the database, but they can differ dras-
tically in terms of performance. For example, the two Rails code
snippets in Figure 2 both check if a user owns any blog posts. How-
ever, they use different APIs, count versus exist, that are translated

https://youtu.be/v_uY5bjGuK0
http://hyperloop.cs.uchicago.edu/powerstation

Ruby: if user.blogs.count > ©

Sql: select count(*) from blogs where user_id = ?
Ruby: if user.blogs.exist?

Sql: select 1 from blogs where user_id = ? limit 1

Figure 2: API misuse from Onebody (the upper code is less effi-
cient than the lower code)

to different SQL queries by Rails: select count versus select
limit 1 — the former scans all the records in table blogs with
specified user_id, counts the number of records, and checks (in the
Ruby application) whether the count is greater than 0. Meanwhile,
the latter returns immediately as soon as it finds one record with
the specific user_id. The latter can easily improve the resulting
application performance by 1.7x [30].

Inefficient data rendering (IR) [30]. While rendering a list of
objects, helper functions are often used to render a partial view for
one object at a time, with much redundant computation repeated for
every object. For example, the HTML in Figure 4b is generated line
by line by repeated invocations of 1ink_to with much redundancy
across lines. Such inefficiency is particularly severe when there are
many objects to render. Consequently, it could become a scalability
bottleneck when the objects need to be first retrieved from database.

We find these six anti-patterns to be prevalent even in well-
developed applications as developers are often unaware of what
database queries are issued by their applications due to the ORM ab-
straction. Such queries also cannot be optimized by traditional Ruby
compilers as they treat ORM APIs as black boxes (nor database
engines as they can only observe the queries issued by the applica-
tion). We next explain how PowerStation can be used to detect such
patterns.

3 POWERSTATION’S STATIC ANALYSIS

PowerStation’s static analysis contains two components. The first
takes in Rails source code and generates a database-aware program
dependency graph for every action,! which we refer to as the ac-
tion dependency graph (ADG). The second component takes in the
ADG, identifies performance anti-patterns, and synthesizes fixes.
We anticipate extending PowerStation to tackle other ORM-related
performance issues in the future.

3.1 Database-aware static analysis framework

PowerStation’s static analysis framework goes through the following
steps to generate ADG from Ruby on Rails source code.
Pre-processing. PowerStation first inlines function calls to enable
inter-procedural analysis. This process involves type inference [22],
as Ruby is dynamically typed, and identifying Ruby code that is
implicitly invoked by an controller action through view rendering,
Rails callback functions, ActiveRecord validation functions, etc.
Program dependency graph (PDG) generation. PowerStation
uses JRuby to process above pre-processed source code, and then
builds the PDG from JRuby intermediate representation (IR). As
illustrated in Figure 1b, every node n in the PDG represents a state-
ment in the JRuby IR. Every edge e in PDG represents either control

! An action is a member method of a Ruby controller class. When a web application
receives a request, a corresponding action will execute to respond to the request.

user.rb

blog.rb

class User < ActiveRecord
has_many: blogs
end

class Blog < ActiveRecord
belongs_to: user
end

schema.rb

schema.rb

create_table "users" do |t|
t.string "name"

create_table "blogs" do |t|
t.integer "user_id"

t.datetime "created_at" t.text "contents"
end end

Schemas inferred by PowerStation
User(id, name, created_at) Blog(id, user_id, contents)

Figure 3: Analyzing table schemas

dependency or data dependency. A data-dependency edge n; — ny
indicates that the output object o of n; is used by n, without other
statements overwriting o in between.

Database-aware ADG generation. PowerStation enhances the
PDG generated above in three ways to create the ADG: (1) changing
and splitting some nodes to become Query nodes; (2) annotating
every Query node with the database table and fields that are read or
written; (3) annotating every outgoing data-dependency edge of a
Query node with the exact field(s) that are used.

To accomplish this, PowerStation first analyzes every model class
that extends the Rails ActiveRecord interface to determine all the
database tables in the application and the association relationship
among them. For example, analyzing the model classes illustrated
in Figure 3, PowerStation identifies the users table corresponding
to the User class and similarly for the Blog class, and that these
two models have a one-to-many relationship, i.e., each instance of
User may own multiple instances of Blog. Second, PowerStation
analyzes the schema. rb file to determine how many fields each table
contains. For example, parsing the schema. rb snippet in Figure 3,
PowerStation learns about the schemas of table users and blogs as
shown in the bottom of the figure.

Third, PowerStation identifies queries from three sources: (1)
explicit invocations of Rails ActiveRecord Query APIs, such as
exist?, reload, update, destroy, etc; (2) implicit queries gener-
ated by Rails to access object fields, e.g., 01 . 07, where the class of 0|
and the class of o0, are associated model classes (e.g., user.blogs
would incur a query to retrieve records in blogs table that are asso-
ciated with the specific user record in users table); (3) explicitly
invoked raw SQL queries through Base.connection.execute. Any
query identified above is represented as a Query node in the ADG.?

3.2 Detecting and fixing anti-patterns

Loop invariant queries. PowerStation first identifies all query nodes
inside loop bodies in ADG. For each such node #, it checks the
incoming data-dependency edges of n. If all of these edges start
from outside the loop L where n is located, then n is identified as
a loop-invariant query, such as “Call: v3...” in Figure 1b. To fix
this, PowerStation inserts a new Assign statement before the start
of the loop, where a newly created variable v gets the return value

2 At run time, multiple such queries could be composed by ORM into one SQL query.
Such query chaining does not affect PowerStation analysis.

+ 1 = link to 'pl','p2’,id:'b’ <aid="b" href="v1">k1
hashes.each do |k,v|
- link_to k, v, target:'b’

+ l.gsub('pl',k).gsub('p2',v)

<aid="b" href="v2">k2
k3
<aid="b" href="v4">k4
k5
end

(a) (b)

Figure 4: Fix inefficient rendering (gsub is a string substitution
API, replacing its 1st parameter with 2nd parameter)

of the loop-invariant query, and replaces every invocation of the
loop-invariant query inside loop L with v.

Dead store queries. PowerStation checks every ADG node that
issues a reload query, i.e., 0.reload, and checks its out-going data-
dependency edge. If there is no such edge, i.e., the reloaded content
is not used, then the query is marked as a dead-store query that is
deleted by PowerStation.

Unused data retrieval queries. For every Read query node 7 in
the ADG, PowerStation first computes the database fields loaded
by n that are used subsequently. This is the union of the used fields
associated with every out-going data-dependency edge of n. Power-
Station then checks if every loaded field is used. For every unused
field, PowerStation either deletes n, if none of the fields retrieved by
n are used, or adds field selection .select(:f1, :f2, .. .)to
the original query in n so that only used fields f1, f2 are loaded.

Common sub-expression queries. PowerStation checks every
query node gg in ADG to see if gg has out-going data-dependency
edges to at least two query nodes g; and ¢, in the same control
path. If that is the case, then by default, Rails would issue at least
two SQL queries that share common sub-expression gg at run time,
one composing g and g and one composing g and ¢, with the
latter unnecessarily evaluates gg again. This can be optimized by
changing the query plan and caching the common intermediate result
for reuse [29]. Doing so requires issuing raw SQL commands that
are currently not supported by Rails ActiveRecord APIs.

API Misuses. PowerStation uses regular expression matching to
find inefficient API misuses as in previous work [30] Since these API
mis-use patterns are simple, PowerStation also synthesizes patches
for each API mis-use pattern through regular expressions.

Inefficient rendering. PowerStation checks every loop in the
ADG to see if it iterates through objects returned by queries and
contains a Rails view helper function such as 1link_to in every
loop iteration. If so, PowerStation identifies the code as having the
inefficient rendering problem. To fix this, PowerStation hoists the
helper function out of the loop, assigning its result to a newly created
variable, and replaces the original helper function in the loop with
gsub (a string substitution function) on the newly created variable,
as shown in Figure 4. Doing so removes the redundant rendering
that is performed on every loop iteration in the original code.

Discussion. Like other code refactoring tools, PowerStation cur-
rently suggests fixes to the user rather than deploying them auto-
matically. This is particularly important for Dead Store and Unused
Data cases, where data uses from a different action, which is rare,
may make PowerStation fixes invalid—developers can check be-
fore accepting PowerStation fixes. In all other cases, PowerStation’s
suggested fixes do preserve program semantics.

RubyMine File Edt View Navigate Code Refactor Run Tools VCS Window Heifeceey |
ece

w blog [,_controller.rb [blog) Whole Application
o
Issue Detail Start Button::- -1
b = Blog.first u = cs R EBSH RO
b.id b.reload is a dead story query
b.reload Fix: remove b.reload
render 'show' [
b.reload

After Fix
b = Blog.first
b.id

blog) B app) M controllers) 41 blogs_controller.rb

blogs_controller.rb powerstation Issues

controllers/blogs_controller.rb 1 fix

Issue List

render ‘'show’ |
b.reload

Figure 5: Screenshots of PowerStation IDE Plugin

4 POWERSTATION IDE INTEGRATION
4.1 PowerStation IDE plugin features

‘We have implemented PowerStation as an IDE plugin for RubyMine [15],

a popular IDE for Ruby on Rails. A screenshot of PowerStation is
shown in Figure 5. By pressing the “PowerStation” button at the
top of RubyMine, users can choose an analysis scope, “Whole Ap-
plication” or “Single Action,” and launch PowerStation analysis
accordingly. Our website includes a PowerStation plugin tutorial [9].

Issues list. The right panel, as highlighted in Figure 5, lists all the
inefficiencies detected by PowerStation, each represented by a button
displaying the file where the inefficiency is located. By default, all
the inefficiencies in a project are listed. Users can also choose to
display inefficiencies of a particularly type as shown in Figure 5—
loop invariant queries (LI), dead store queries (DS), unused data
retrieval queries (RD), common sub-expression queries (CS), API
misuses (IA), and inefficient rendering (IR).

Issues highlight. Clicking a file button in the issue list will navi-
gate users to the corresponding file in the editor, with the inefficient
code highlighted. When a user hovers her mouse over the highlighted
code, the inefficiency reason will be displayed, as shown in Figure 5.

Issue fix. Clicking the “fix” button next to each issue in the
issue list will pop up window asking the user whether she wants
PowerStation to fix the issue. If so, PowerStation will synthesize a
fix as discussed in Section 3, and display the fixed code in the editor
panel. At that point, the original “fix” button becomes an “undo”
button, allowing users to revert the fix if needed.

4.2 TImplementation

We used the APIs provided by the IntelliJ Platform like ToolWindow
and JBTabbedPane to create the PowerStation issues list.

Highlighting the selected inefficiency is straight-forward using the
IntelliJ API HighlighterLayer, given file name and line number
provided by PowerStation static analysis.

For every anti-pattern, PowerStation prepares a string template
that explains the inefficiency and the fix strategy, such as “* is a dead
store query. Fix: delete *.” for a dead-store query (Figure 5). This
string is instantiated with program variables and expressions output
from PowerStation static analysis, and displayed using Intelli] API
FileDocumentManager.

Finally, IntelliJ API FileEditorManager, TextRange, and Document

are used to insert, replace, and delete source code in the editor panel.

Table 1: Inefficiencies detected by PowerStation in 12 apps

App. Loop Unused Common API Inefficient SUM
Invariants Data Sub-expr Misuses Render
Ds 0 16 106 85 0 207
Lo 0 2 0 45 5 52
Gi 0 14 92 23 1 130
Re 0 11 101 59 0 171
Sp 0 22 0 20 0 42
Ro 0 3 0 11 0 14
Fu 0 12 15 2 1 30
Tr 0 23 30 30 1 84
Da 1 55 36 57 0 149
On 0 17 39 76 0 132
FF 0 24 12 4 5 45
oS 0 89 60 16 0 165
SUM 1 288 491 428 13 1221

5 EVALUATION

PowerStation can be downloaded from IntelliJ plugin repository [5]
and easily installed in RubyMine.

We have evaluated PowerStation using the latest versions of 12
open-source Ruby on Rails applications, including the top two popu-
lar applications on Github of 6 categories, Forum, Collaboration, E-
commerce, Task-management, Social Network, and Map. As shown
in Table 1, PowerStation automatically identifies 1221 inefficiency
issues, and automatically generates patches for 730 of them (i.e., all
but the common sub-expression pattern). We randomly sampled and
examined half of the reported issues and the suggested fixes, and
found no false positives. Due to the limited resource and time, we
reported 433 issues with 57 of them already confirmed by developers
(none has been denied). PowerStation static analysis is fast, taking
12-625 seconds to analyze the entire application that ranges from
4k to 145k lines of code in our experiments. Developers can also
choose to analyze one action at a time, which usually takes less than
10 seconds in our experiments.

6 RELATED WORK

Recent work used static program analysis to find optimization op-
portunities in database-related applications, such as QBS [20] for
query synthesis, QURO [28] for query reordering in transactions,
and PipeGen [23] for automatic data pipe generation. None of these
techniques detect or fix anti-patterns addressed by PowerStation.
Much work was done to detect performance issues, like loop
inefficiency, data bloating, under-utilized data structure, and cache
false-sharing, in compiler research [21, 24-27]. As pointed out in
previous work [19, 29, 30], database-backed web applications suffer
from different types of inefficiencies and require new detection and
fixing tools that are aware of queries issued by the application.
Dynamic profiling tools have been built for Rails applications [11];
they cannot statically detect and fix inefficiency root causes. Static

analysis tools have been built to detect code smells [12], security
vulnerabilities [2], and code cleaning opportunities [3, 17] in Rails
applications. However, they do not detect performance problems.
The Intellij platform [8] itself provides more than 1000 plugins for
RubyMine, while none of them tackles code inefficiency.

7 CONCLUSION AND FUTURE WORK

PowerStation is a new tool that automatically detects and fixes a
large set of ORM-related performance issues that are both common
and severe in database-backed web applications. Its integration with
RubyMine provides an easy way for Rails developers to avoid mak-
ing performance-degrading mistakes in their programs. We have
used PowerStation to identify and fix many performance-related is-
sues in real-world applications, and will extend PowerStation tackle
further performance anti-patterns as future work.

REFERENCES

[1] Airbnb Data Growth. https://www.recode.net/2017/7/19/15949782/.

[2] BRAKEMAN. https://github.com/presidentbeef/brakeman.

[3] DEADWEIGHT. https://github.com/aanand/deadweight/.

[4] Django. https://www.djangoproject.com/.

[5] Download PowerStation Plugin.

https://plugins. jetbrains.com/plugin/10604-powerstation/.

Facebook.

https://www.statista.com/statistics/346167/facebook-global-dau/.

[7] Hibernate. http://hibernate.org/.
[8] IntelliJ. http://www. jetbrains.org/intellij/sdk/docs/welcome.html/.
[9] PowerStation. www.hyperloop.cs.uchicago.edu/powerstation/.

[10] PowerStation Static Analysis Framework/.
https://github.com/hyperloop-rails/powerstation/.

[11] rackminiprofiler.
https://github.com/MiniProfiler/rack-mini-profiler/.

[12] RAILS-BEST-PRACTICES.
https://github.com/flyerhzm/rails_best_practices/.

[13] Redmine-23334. https://redmine.org/issues/23334/.

[14] Ruby on Rails. http://rubyonrails.org/.

[15] RubyMine. https://www. jetbrains.com/ruby/.

[16] Speed is a killter. https://blog.kissmetrics.com/speed-is-a-killer/.

[17] TRACEROUTE. https://github.com/amatsuda/traceroute/.

[18] What is page load time and why is it important?
https://www.bigcommerce.com/ecommerce-answers/
what-page-1load-time-and-why-it-important/.

[19] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E Hassan, Mohamed
Nasser, and Parminder Flora. 2016. Finding and evaluating the performance impact
of redundant data access for applications that are developed using object-relational
mapping frameworks. Transactions on Software Engineering (2016).

[20] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing
database-backed applications with query synthesis. In PLDI.

[21] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. 2008. A Scalable Tech-
nique for Characterizing the Usage of Temporaries in Framework-intensive Java
Applications. In FSE.

[22] Michael Furr, Jong-hoon David An, Jeffrey S Foster, and Michael Hicks. 2009.
Static type inference for Ruby. In SAC.

[23] Brandon Haynes, Alvin Cheung, and Magdalena Balazinska. 2016. Pipegen: Data
pipe generator for hybrid analytics. In SOCC.

[24] Tongping Liu and Emery D Berger. 2011. Sheriff: precise detection and automatic
mitigation of false sharing. In OOPSLA.

[25] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. 2013. Toddler: Detect-
ing performance problems via similar memory-access patterns. In /CSE.

[26] Oswaldo Olivo, Isil Dillig, and Calvin Lin. 2015. Static detection of asymptotic
performance bugs in collection traversals. In PLDI.

[27] Guoging (Harry) Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith
Schonberg, and Gary Sevitsky. 2010. Finding low-utility data structures. In PLDI.

[28] Cong Yan and Alvin Cheung. 2016. Leveraging lock contention to improve OLTP
application performance. VLDB (2016).

[29] Cong Yan, Junwen Yang, Alvin Cheung, and Shan Lu. 2017. Understanding
Database Performance Inefficiencies in Real-world Web Applications. In CIKM.

[30] Junwen Yang, Pranav Subramaniam, Shan Lu, Cong Yan, and Alvin Cheung.
2018. How not to structure your database-backed web applications: a study of
performance bugs in the wild. In /CSE.

[6

https://www.recode.net/2017/7/19/15949782/
https://github.com/presidentbeef/brakeman
https://github.com/aanand/deadweight/
https://www.djangoproject.com/
https://plugins.jetbrains.com/plugin/10604-powerstation/
https://www.statista.com/statistics/346167/facebook-global-dau/
http://hibernate.org/
http://www.jetbrains.org/intellij/sdk/docs/welcome.html/
www.hyperloop.cs.uchicago.edu/powerstation/
https://github.com/hyperloop-rails/powerstation/
https://github.com/MiniProfiler/rack-mini-profiler/
 https://github.com/flyerhzm/rails_best_practices/
https://redmine.org/issues/23334/
http://rubyonrails.org/
https://www.jetbrains.com/ruby/
https://blog.kissmetrics.com/speed-is-a-killer/
https://github.com/amatsuda/traceroute/
https://www.bigcommerce.com/ecommerce-answers/what-page-load-time-and-why-it-important/
https://www.bigcommerce.com/ecommerce-answers/what-page-load-time-and-why-it-important/

	Abstract
	1 Introduction
	2 Performance Anti-Patterns
	3 PowerStation's static analysis
	3.1 Database-aware static analysis framework
	3.2 Detecting and fixing anti-patterns

	4 PowerStation IDE integration
	4.1 PowerStation IDE plugin features
	4.2 Implementation

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

